Capnography for Nonintubated Patients: The Wave of the Future for Routine Monitoring of Procedural Sedation Patients

Debbie Sandlin, RN, CPAN

THE USE OF procedural sedation is growing dramatically because of the increase in performance of minimally invasive procedures in nonacute and acute care settings. As anesthesia agents have been refined to provide short-acting sedation with minimal side effects, procedural sedation is becoming increasingly desirable. Procedural sedation is not only commonly used in the operating room, but has many other applications such as endoscopy, radiology, cardiology, dentistry, physicians’ offices, and pediatrics. The Joint Commission on Accreditation of Healthcare Organizations (JCAHO) defined 4 levels of sedation and anesthesia in January 2001. These defined levels made clear that because sedation-to-anesthesia is a continuum, sedation patients should be monitored and treated the same as general anesthesia patients.

Table 1. Capnography Waveforms: Interpreting the Capnogram

<table>
<thead>
<tr>
<th>Capnogram</th>
<th>Waveform display of CO₂ concentration in the patient’s airway</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capnometry</td>
<td>Measurement and numerical display of CO₂ concentration at the patient’s airway</td>
</tr>
<tr>
<td>PaCO₂</td>
<td>Partial pressure of CO₂ in arterial blood</td>
</tr>
<tr>
<td>EtCO₂</td>
<td>End-tidal carbon dioxide: measurement of the concentration of CO₂ at the end of exhalation</td>
</tr>
</tbody>
</table>

Capnography is the continuous measurement and display of carbon dioxide (CO₂) concentration in exhaled breath. A capnogram is the graphical waveform depicting CO₂ concentration throughout respiration (Table 1). A normal capnogram has a near zero baseline with a sharp rapid rise, a plateau, then a sharp rapid down shift (Fig 1). Abnormal capnograms occur for a multitude of reasons and present with varying changes from the normal (Fig 2).
Capnographs currently are used to monitor ventilator status, airway leaks, ventilator circuit disconnects, and the early onset of malignant hyperthermia in intubated ventilated patients. During procedural sedation, capnography can be used to detect hypoventilation caused by sedation or narcotics and monitor adequacy of ventilation. Current literature supports the use of capnography in the emergency room and intensive care units during procedural sedation for all ages, and capnography is being used more frequently in pediatric dentistry and in pediatric intensive care units.
Although capnography does not eliminate the need for arterial blood gas sampling, when properly used it has the potential to reduce the frequency of some invasive procedures while still providing valuable information. It certainly has implications for greater use in procedural sedation cases and may well become a standard of care in monitoring for procedural sedation.

New! **Smart CapnoLine™ O₂**

O₂/CO₂ – Oral/Nasal Cannula

- Unique O₂ delivery provides greater comfort and reduces CO₂ sample dilution
- Uni-junction™ cannula samples only where breath is exhaled

Fig 3. Oridion Smart CapnoLine divided cannula. Supplied by Oridion, with permission.

Fig 4. Oridion Smart CapnoLine CO₂ sampling solution for nonintubated patients. Supplied by Oridion, with permission.
Oridion Systems (Jerusalem, Israel) has developed the Smart Capnoline O₂, which is the first system to display an accurate waveform display of exhaled CO₂ from sedated, nonintubated patients while delivering supplemental oxygen. This system displays the earliest possible warning signs of potentially fatal adverse events that may develop as a result of procedural sedation including airway obstruction, ventilatory depression, and apnea.

The Oridion Smart Capnoline uses a special cannula that is capable of measuring exhaled CO₂ from both the nose and mouth, while delivering supplemental oxygen (Fig 3). Very tiny holes are used to disperse a cloud of oxygen toward the nose and mouth while reducing CO₂ sampling dilution to a minimum (Fig 4). According to studies by Loughnan et al, the divided nasal cannula more accurately reflects end tidal CO₂ partial pressure and provides a more representative waveform when compared with a traditional facemask system, while delivering adequate supplemental oxygenation. Other studies conclude that the microstream capnometer provides a more accurate end tidal CO₂ partial pressure measurement in nonintubated, spontaneously breathing patients than conventional sidestream capnometers (Fig 5). This system provides crisp, clear waveforms and requires no routine calibration. It eliminates the problem that conventional mainstream capnometers have with excess moisture collection by using a special in-line filter.

This Oridion product is compatible with most monitoring systems, including (but not limited to) Datascope (Paramus, NJ), Datex Ohmeda (Madison, WI), Agilent Technologies-Phillips Medical Systems-Hewlett-Packard (Bathel, WA), Thermo Respiratory Group-Medical Data Electronics (Arlenta, CA), Medtronic PhysioControl (Seattle, WA), Nellcor Puritan Bennett (Plesanton, CA), and Novametrix Medical (Wallingford, CT).

Standards for basic anesthetic monitoring developed by the American Society of Anesthesiologists (ASA) state that every patient receiving general anesthesia shall have continued monitoring for the presence of expired CO₂ unless invalidated by the nature of the patient, procedure, or equipment. Now that an accurate and easy method for measurement of expired CO₂ in nonintubated, sedated patients exists, one can reasonably assume that these ASA standards may eventually be applied to procedural sedation patients to safeguard those patients who may cross the sedation-to-anesthesia continuum.

For additional information about this product, contact Oridion Medical Inc, 140 Town and Country Drive, Suite B, Danville, CA 94526, USA. 1-888-ORIDION or www.oridion.com.

References

7. Press Release: Oridion receives FDA (Federal Drug Administration) clearance for novel monitoring device that provides earliest possible detection of respiratory adverse events that can occur during procedural sedation. Jerusalem, Israel, Nov 26, 2001

